Flexibility and rigidity of frameworks consisting of triangles and parallelograms

Abstract

A framework, which is a (possibly infinite) graph with a realization of its vertices in the plane, is called flexible if it can be continuously deformed while preserving the edge lengths. We focus on flexibility of frameworks in which 4-cycles form parallelograms. For the class of frameworks considered in this paper (allowing triangles), we prove that the following are equivalent: flexibility, infinitesimal flexibility, the existence of at least two classes of an equivalence relation based on 3- and 4-cycles and being a non-trivial subgraph of the Cartesian product of graphs. We study the algorithmic aspects and the rotationally symmetric version of the problem. The results are illustrated on frameworks obtained from tessellations by regular polygons.

Publication
Computational Geometry (2024). 120: Art. 102055 . DOI:10.1016/j.comgeo.2023.102055
Date
Next